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Abstract: This paper deals with a flexible multi-station manufacturing system 
modelled by re-entrant queueing model. Our model incorporates classical 
queueing systems with exponential service times and controlled arrival process 
under a priority service discipline. The system is decomposed into N 
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fundamental multi-productive stations and 2N – 1 classes, a part follows the 
route fixed by the system, where each one is processed by N stations requiring 
2N – 1 services. We assume that there is an infinite supply of work available, 
so that there are always parts ready for processing step 1. Our purpose in this 
paper is to present a detailed theoretical and simulation analysis of this priority 
multi-station manufacturing system. 

Keywords: queues; manufacturing; priority scheduling policies; stability; 
modelling; virtual infinite buffers; simulation. 
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1 Introduction 

A manufacturing system can be defined as a combination of humans, machinery, and 
equipment that are bound by a common material and information flow. The materials 
input to a manufacturing system are raw materials and energy. Information is also input 
to a manufacturing system, in the form of customer demand for the system’s products. 
The outputs of a system can likewise be divided into materials, such as finished goods 
and scrap, and information, such as measures of system performance (Chryssolouris, 
2006). 

These sort of systems have been widely studied, Tiwari and Tiwari (2014) gave a 
novel methodology for sensor placement for the multi-station manufacturing processes so 
that the dimensional variation in the manufactured product will be reduced, Sangwan 
(2013) presented a criteria catalogue and a multi-criteria decision model for the 
evaluation of manufacturing systems based on environmental aspects of the 
manufacturing system, Fazlollahtabar and Saidi-Mehrabad (2013) developed a 
mathematical model to assess the reliability of machines and automated guided vehicles 
in flexible manufacturing systems, Polotski et al. (in press) analysed a failure prone 
manufacturing system producing two part types and requiring a setup for switching from 
one part type to another. 

In recent years, queueing theory constitutes a powerful tool in modelling and 
performance analysis of many complex systems, such as production/flexible 
manufacturing systems, computer networks, telecommunication systems, call centres, and 
service systems. Many researchers focused on analysing these different machining 
systems, let us cite for instance, Jain (2013), Jain et al. (2013, 2014) and references 
therein. 

Stability and performance analysis of multi-class queueing networks is by nowadays 
an agreeably-researched field. Some preeminent papers in this research field are Harrison 
(1988), Chen and Mandelbaum (1991), and Kumar (1993). Some notorious contributions 
with respect to the stability analysis can be summarised in Rybko and Stolyar (1992), 
Baccelli and Foss (1994), Dai (1995), Bramson (2008), Chen and Yao (2001), Meyn 
(2008) and Gurvich (2014). 

Queueing networks with product form have been greatly studied, Visschers et al. 
(2011) considered a memoryless single station service system with many servers, authors 
showed that there exist assignment probabilities under which the system has a product 
form stationary distribution, and obtained explicit expressions for it, the waiting time 
distributions in steady state have been derived. Mather et al. (2011) showed for some 
multi-class queueing networks that time-dependent distributions for the multi-class queue 
lengths can have a factorised form which reduces the problem of computing such 
distributions to a similar problem for related single-class queueing networks. Jung and 
Morrison (2010) gave closed form solutions for the equilibrium probability distribution in 
the closed Lu-Kumar network under two buffer priority policies, Kim and Morrison 
(2010) presented an equilibrium probabilities in a class of two station closed queueing 
network. 

Re-entrant lines [described in Harrison (1988)] are a special case of queueing models 
related with systems composed of some machines/stations, in which customers are 
processed several times by the same server. These schemes are used to model a variety of 
real life systems including service centres, production/manufacturing systems, computer 
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and communication networks…. Much attention has been devoted to obtain stability 
conditions for this kind of networks, Adan and Weiss (2005, 2006), Nazarathy and Weiss 
(2008), Weiss (2004, 2005) and Nazarathy (2008). A succinct study of these results is 
given in Guo et al. (2014), Kim and Morrison (2013), and Guo (2009). 

Simulation technique is one of possible ways of modelling many complex systems. It 
can help to improve performance in terms of productivity, and most importantly it can 
help to identify and detect bottlenecks in production. Simulation has been used to study 
the behaviour of real systems in order to identify and understand problems associated 
with the systems. Therefore, in order to improve the performance in any manufacturing 
system, it is necessary to improve constraints also known as bottlenecks. Joseph and 
Sridharan (2014) focused on the evaluation of the routing flexibility of a flexible 
manufacturing system with the dynamic arrival of part types for processing in the system. 
A typical flexible manufacturing system configuration is chosen for detailed study and 
analysis. Ramaswami and Jeyakumar (2014) studied non-Markovian bulk queueing 
system with state dependent arrivals and multiple vacations using a simulation approach, 
Korytkowski and Wisniewski (2012) examined a multi-product production systems with 
in-line quality control, Rad et al. (2014) gave an analysis of a manufacturing system 
using simulation and multi-criteria decision-making tools were applied, Hasan et al. 
(2014) considered reconfigurable manufacturing systems to be one of the newer 
technologies which cannot only meet stochastic product demand but can also produce 
products having customised variety, Tajini et al. (2014) developed a flexible modelling 
environment for the simulation and analysis of different production systems, Boualem  
et al. (2015) focused on flexible production system modelled by re-entrant queueing 
network, where several performance measures have been investigated through expanded 
Monte Carlo simulations. 

The main objective of this paper is to discuss the stability of a manufacturing system 
model under a specific service discipline, as an important source of the motivation of our 
research we mention Weiss (2004), where a stability analysis of a particular case ‘a  
re-entrant line with two stations and three processing steps’ of our general model is 
carried out. Thus, the main motivation of this research is to develop the stability study of 
general multi-station manufacturing system with an arbitrary N (N ≥ 2) number of 
stations by using two different techniques including fluid approach and Foster’s criterion. 
Note that it is not obvious how to extend the proofs beyond two machines queueing 
systems. In addition, in this paper the simulation is used to model our system. Using 
simulation technique as a means for improving existing manufacturing systems allows to 
evaluate the effect of local changes on the global system performance. The considered  
re-entrant model consists of N stations with infinite supply of work at the first one. In an 
infinite re-entrant line, we suppose that there are continually infinitely many class 1 
customers available, which assures that the station serving class 1 will be always busy 
under non-idling service discipline. 

Infinite supply of work expresses an ability to control the arrivals and is often a 
reasonable way to model a processing system. In some situations there may indeed be an 
infinite supply of work. In manufacturing systems, the supply of parts for processing at 
an expensive machine may be controlled and not allowed to exhaust. We refer to this as 
an infinite virtual queue: it acts like an infinite queue while in fact it only contains a few 
customers which are continually replenished. In standard queueing networks, one can 
regard the input stream as the output of a server which is fed by an infinite supply of 
work (Nazarathy and Weiss, 2010). 
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Our system is a generalised infinite re-entrant line initialised by Weiss (2004). By 
using Foster criterion, the author gave a sufficient condition for the stability of the 
system. In the present work, we study stability condition for our system using Foster 
criterion and fluid approach, then the effects of various parameters on the performance of 
the system have been examined numerically. 

This paper is organised as follows: Section 2 describes the manufacturing system 
modelled by a re-entrant queueing model. In Section 3, the theoretical analysis is given, 
the stability via fluid model approach and Foster criterion approach is established. In 
Section 4, a detailed simulation study is carried out considering two different specific 
policies, then the obtained results are compared. 

2 The mathematical model 

The multi-station manufacturing system considered in this paper consists of inputs, 
queues and servers as service centres (see Figure 1). Generally, it consists of N servers 
serving customers arriving in some manner and having some service requirements. The 
customers (the flow of entities) represent users, customers, transactions or programs. 
They arrive at the service facility for service, waiting for service, and leave the system 
after being served. The queueing system is described by distribution of inter-arrival 
times, distribution of service times, the number of servers, and the service discipline. 
More precisely we consider a multi-station manufacturing system model consisting of N 
stations, and a 2N – 1 steps. Customers arrive to the system at rate α, and follow the route 
fixed by the system, each one is processed first by station 1 for the first step with rate μ1, 
after that by station 2 for the second step with rate μ2, then aligns all the steps of the 
network, until the (2N – 1)th one at which it will be processed again by the first station 
with rate μ2N–1 then leaves definitively the system. The processing times for each of the 
2N – 1 steps are independent sequences of independent identically distributed random 
variables, with means mi and rates 1 ,  1,

ii mμ i N= =  and without loss of generality we 

scale time so that 
1

1.
N

ii
μ

=
=∑  It is well-known that the customers arrive at this system in 

a renewal stream, at rate α, and under the condition 

( )2 1, 1, 1,
1,

i i N i

N N

ρ m m i N
ρ m

−⎧ = + < = −⎪
⎨

= <⎪⎩

α
α

 (1) 

the queues of customers waiting for each step are stable, and in fact the system is positive 
Harris recurrent, for any work conserving policy (see Dai and Weiss, 1996; Kumar and 
Kumar, 1994). 

Assume that there is an infinite supply of work available, so that there are always 
customers ready for processing step 1. In this case, machine 1 will always be busy. In 
other words, the input and output rates at the first station are such that the offered load to 
all the resources is equal to ρ1 = 1. We call buffer 1 a virtual infinite queue. The queue is 
virtual because in practice buffer 1 need not contain many customers, but it needs to be 
monitored so it will never be empty. The concept of infinite supply of work is quite 
natural in many practical situations, and in particular it is very relevant to manufacturing 
systems. The fact that there are always infinitely many class 1 customers available 
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guarantees that the station serving class 1 will be always busy under non-idling service 
discipline. 

Our purpose in this study is to discuss in details this system under last in first out 
policy (last buffer first server) (LIFO). In particular, we show that if m1 + m2N > mi +  
m2N–i, 2, 1i N= −  and m1 + m2N > mN then under LIFO policy machine 1 will work all the 
time (that is we will have ρ1 = 1), but the queues for steps 2, 3, …, 2N – 1 will be stable. 
Suppose that in our system there are always customers available for processing of step 1. 
When these later finish processing step 1 by station 1, they queue in buffer 2 where they 
remain until they will be processed by machine 2 for step 2, then they move to machine 3 
for step 3. The customers continue requiring services until they arrive to buffer N where 
they will be served by machine N for step N, after that they align the (N + 1)th queue 
requiring a service of mean mN+1 from the (N – 1)th station, and move to other stations for 
other services till the first one where they will be served with mean m2N–1, and finally 
they leave the system. Each buffer is processed in FIFO order. Processing is non-idling, 
that is a machine will always process a customer when there is work. We assume that 
machine i, 1, 1i N= −  gives preemptive priority to buffer j, j = 2N – i. Whenever there 
are customers in buffer j, machine i will work on the first of them. When buffer j empties, 
machine i will immediately resume processing of a customer in step i. If during the 
processing of step i a customer arrives from buffer j – 1 into buffer j, machine i will  
preempt its work at buffer i, and immediately start processing buffer j. Since the 
processing times are exponential, this system can be described as a discrete state 
continuous time Markov jump process, with the state given by the number of customers 
in buffers 2, 2 1N −  denoted n2, …, n2N–1. 

Figure 1 Multi-station manufacturing model 

 

Our result has an important practical applications in job-shop scheduling; the best 
realistic application of our model is job shop manufacturing system in which little 
batches of a variety of custom products are made. Job shops are usually businesses that 
perform custom parts manufacturing for other businesses. Examples of job shops include 
a large class of businesses a machine tool shop, a machining centre, a commercial 
printing shop, and many other manufacturers. Our model can be also found in many other 
realistic situations like communication network where each node transmits unlimited 
supply of materials and various classes of messages originating at this node, under some 
specific preemptive priority discipline. Metropolitan area networks is a particular 
computer communication case of our model, it is a network of ducting and fibre optic 
cable laid within a metropolitan area which can be used by a variety of businesses and 
organisations to provide services including telecom, internet access, television, etc. 
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3 Theoretical study 

The main objective of this paper is to discuss the stability conditions of our multi-station 
manufacturing system (see Figure 1). A sufficient condition for the stability of two 
machines and a three step production process, with an infinite supply of work was 
established in Weiss (2004) using the Foster criterion. In the current work, we give the 
condition stability of large class of general re-entrant line queueing networks initialised 
by Weiss (2004) using two different approaches, namely, the Foster criterion approach, 
and the fluid model approach. The main result is given in the following theorem. 

Theorem 1: The multi-station manufacturing system with N stations and 2N – 1 
processing step is stable if and only if 

1 2 2

1 2

, 2, 1,
.

N i N i

N N

m m m m i N
m m m

−⎧ + > + = −⎪
⎨

+ >⎪⎩
 (2) 

Proof: The proof of this theorem will be given into two ways, the first one is based on 
Foster criterion approach, the second one on fluid model approach, but at first, let us give 
a succinctly explanation of the suggestion of equation (2). By hypothesis, the first queue 
is infinite virtual, this assumption assures that station 1 is working all the time, which 
means that the traffic intensity of the station is ρ1 = 1. So, every part which enter the 
system requires expected m1 + m2N time units from it. Station 1 is always busy, thus the 
number of parts which processes in the system per time unit is 

1 2
1 .

Nm m+  Then for 

2, ,j N=  the number of parts that are processed when the station is fully utilised is mi + 

mj, 2, 1,i N= −  j = 2N – i and mN per time unit. To this end, it is reasonable to say that 

the system will be stable if and only if m1 + m2N > mi + m2N–i, 2, 1,i N= −  and m1 + m2N > 
mN. 

The two following sub-sections establish the necessary and sufficient condition of our 
system, using two approaches. 

3.1 First approach: the stability via foster criterion 

In this part, we have to discuss the stability for Q(t) = (Qk), 2, 2 1k N= −  by using the 
Foster criterion. 

For our study, we need to employ the following result. 

Lemma 2 (Meyn and Tweedie, 1993): Let h be a non-negative measurable function on 
state space of Markov chain Zn (the set of all non-negative integer numbers, it is written 
as S). S0 is a finite set of S. 

The chain Zn is positive recurrent if there exist ε > 0 and B < ∞such that 

( )( )1 0( ) for all .z h Z h z ε z S− < − ∉E  (3) 

( )( )1 0for all .z h Z B z S< ∈E  (4) 

Suppose that the non-negative function h satisfies 
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( )( )1 0( ) for all \ ,z h Z h z z S S≥ ∈E  (5) 

( )1 0 0sup ( ) if for any \ ,z
z S

h Z h z z S S
∈

− < ∞ ∈E  (6) 

( )0 0( ) for all ,h z h z z S> ∈  (7) 

then we have 0( ) ,Sτ = ∞E  where 0Sτ  = inf{n ≥ Zn ∈ S0}. 
Now, we need to find a function h(∙) defined on S such that inequalities (3) to (4) 

hold. Let h(n) = n, for all non-negative numbers. 
Let us prove that 

1 2 1 2

1 2 1

, if 2, 1,
,

N i N i

N N

m m m m i N
m m m

− −

−

⎧ + > + = −⎪
⎨

+ >⎪⎩
 

is sufficient condition for the stability of process Q(t), in other words the Markov chain 
Zn is positive Harris recurrent. 

We have, for z0 > L, with L the random number of customers processed in the each 
busy period of an M/M/1 queue with arrival rate μj and service rate μj+1, , 2 2;j N N= −  

( )( ) ( ) ( )
0

1
1 0 1

1 2 1
.z i

N

mh Z h z μ μ L
m m −

′− ≤ −
+

E E  

:L′  number of customers served in a truncated busy period. Two cases are considered, 
either the busy period ends before all customers of class j are processed, and thus at that 
moment class j + 1 is empty, or class j empties the first. 

We now choose ξ > 0 small enough, and define S0 = {0, 1, …, n2N–1}, so that for any 
z0 ∉ S0 we have: 

( )( ) ( )0
1

1 0 1
1 2 1 2

0.i
z i

N i N i

m mh Z h z μ μ ξ
m m m m− −

− ≤ − + <
+ +

E  

Thus, equation (3) holds and equation (4) follows directly from the definition of h(∙), this 
yields that Zs is positive recurrent. 

Next, we need to find a function h(∙) defined on S such that inequalities (5) to (7) 
hold. 

To prove the necessity of the stability conditions, we suppose that 

1 2 1 2

1 2 1

, if 2, 1,
,

N i N i

N N

m m m m i N
m m m

− −

−

⎧ + ≤ + = −⎪
⎨

+ ≤⎪⎩
 

and we have to demonstrate that the Markov chain Zn is not positive Harris recurrent. So, 
for all z0 > n2N–1, and since m1 + m2N–1 ≤ mi + m2N–i, and m1 + m2N–1 ≤ mN we have 

( )( ) ( )0
1

1 0 1
1 2 1 2

0.i
z i

N i N i

m mh Z h z μ μ
m m m m− −

− ≥ − ≥
+ +

E  

Thus equation (5) holds. 
Now, for all z ∈ S 



   

 

   

   
 

   

   

 

   

    Multi-station manufacturing system analysis 237    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

( )( )
2

1
1 1 1

1 2 1
( ) .

N i

i
z z i

N i m

m mh Z h z Z z μ μ
m m m −− +

− = − ≤ −
+

E E  

So, 1sup | ( ( )) ( ) | .z S z h Z h z∈ − < ∞E  Then (6) holds. Equation (7) follows directly from the 
definition of h(∙), which completes the proof. 

3.2 Second approach: the stability via fluid model 

First, let us present some performance measures which are particularly interesting. Let  
2N – 2 dimensional queue length process Q = (Qk) with Qk = {Qk(t): t ≥ 0}, where Qk(t) 
indicates the number of class k customers in the network at time t. The process  
S = {Sk(t), t ≥ 0}, where Sk(t) indicates the number of service completions for class k after 
station σ(k) serves k for a cumulative of t units of time. T = {Tk(t): t ≥ 0}, where Tk(t) 
indicates the cumulative amount of processing time that the station σ(k) has served class k 
customers during [0, t]. Thus, Sk(Tk(t)) is the total number of class k customer service 
completions by time t. 

So, since there is a fixed route for all parts in the system, one can check that S(∙), T(∙), 
Y(∙) and Q(∙) satisfy the following queueing system: 

( ) ( )1 1( ) (0) ( ) ( ) 0, 2, 2 1.k k k k k kQ t Q S T t S T t k N− −= + − ≥ = −  (8) 

[ ]( ) 0
0

( ) 1 , , 2 1.k

t
k Q sT t ds k N N>= = −∫  (9) 

[ ]22 2 ( ) 0
0

( ) ( ) ( ) 1 , 1, 1.N i

t
i N i N i Q sT t t T t Y t ds i N−− − == − = = = −∫  (10) 

[ ]( ) 0
0

( ) ( ) 1 .N

t
N N Q sY t t T t ds== − = ∫  (11) 

Then, referring to Chen (1995), and Dai and Weiss (1996), it is easy to verify that the 
fluid models corresponding to formulas (8)–(11) are given by: 

( ) ( )1 1( ) (0) ( ) ( ) 0, 2, 2 1.k k k k k kQ t Q μ T t μ T t k N− −= + − ≥ = −  (12) 

[ ]( ) 0
0

( ) 1 , , 2 1.
k

t
k Q sT t ds k N N>= = −∫  (13) 

[ ]22 2 ( ) 0
0

( ) ( ) ( ) 1 , 1, 1.
N i

t
i N i N i Q sT t t T t Y t ds i N

−− − == − = = = −∫  (14) 

[ ]( ) 0
0

( ) ( ) 1 .
N

t
N N Q sY t t T t ds== − = ∫  (15) 

Using formulas (13) to (15), Qk(∙) and Tk(∙), 1, 2 1,k N= −  are Lipschitz continuous. 
Now, it is well-known that the fluid model given by expressions (12) to (15) is 

strongly stable if there exists a time γ > 0 such that for any fluid solution Q(∙), T(∙) of the 

fluid model with the initial condition 
2 1

2
(0) 1,

N
kk

Q
−

=
=∑  we have 

2 1

2
( ) 0,

N
kk

Q t
−

=
=∑  for  

t ≥ γ. 
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To prove that our multi-station queueing model is stable, it suffices to prove that its 
corresponding fluid is stable, to this end, we have to demonstrate that the fluid model 
given by (12) to (15) is stable if and only if condition (2) is satisfied. 

First, let us suppose that 

1 2 2

1 2

, 2, 1,
.

N i N i

N N

m m m m i N
m m m

−⎧ + ≤ + = −⎪
⎨

+ ≤⎪⎩
 

By assumption, the first station is always busy, there is an infinitely customers waiting 
for service all the time, so 1 2 1( ) ( ) ,NT t T t t−+ =  and 1 2 1( ) ( ) 1.NT t T t−+ =  

Thus, for station 1 we have 1 2 1
1 1( ) 0.Nm m

m T t t−+ − ≥  

The processing rate of class 1 is 1 1( ),μ T t  such that 

1 1 1 1
1 2 1 1 2 1

1 1( ) , and ( ) ,
N N

μ T t t μ T t
m m m m− −

≥ ≥
+ +

 

Since for station 2, ,i N=  we have 2( ) ( )i N iT t T t t−+ ≤  and ( ) ,NT t t≤  this yields 

2

1 2 1 1 2 1
1 0, 0, and 1 0, 0.i N i N

N N

m m mt t t t
m m m m

−

− −

+⎛ ⎞ ⎛ ⎞− ≥ ∀ > − ≥ ∀ >⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠
 

So, if mi + m2N–i ≥ m1 + m2N–1 and mN ≥ m1 + m2N–1, | ( ) |Q t → ∞  as t → ∞, with 
2 1

1
| ( ) | ( ).

N
kk

Q t Q t
−

=
=∑  Thus, the necessity of the condition stability is proved. 

Now, the necessary stability condition of the system turns out to be sufficient, it is 
simply to proceed by contra positive to get the sufficient result. 

At first suppose that 2 1( ) 0,NQ t− ≠  this yield 1( ) 0,T t =  and 2 1( ) 1.NT t− =  

Thus, 
2 1

2 11
( ) .

N
k Nk

Q t μ
−

−=
= −∑  

If 2 1( ) 0, ( ) 0, 2, 2 1,N jQ t Q t j N− = ≠ = −  and 2 1 2 1

1 2 1

( ) 0.i N i N

N

m m m m
m m

− −

−

+ − +
+ <  

Since 
2 1

2
(0) 1

N

k
Q

−

=
=∑  and Lipschitz continuity of 

2 1

2
( ),

N

k
Q

−

=
⋅∑  there exists a γ > 0 

such that for t ≥ γ, 
2 1

2
( ) 0.

N

k
Q t

−

=
=∑  

Finally, we have proved that the fluid model given by formulas (12) to (15) 
associated with our network given by expressions (8) to (11) is stable, thus our 
manufacturing system is stable.  

Next section is devoted to the simulation approach study, where a class of manufacturing 
system is modelled by a re-entrant queueing system to analyse its performance measures. 
In addition, we compare and verify the results obtained from the simulation techniques 
and the theoretical results given for this type of systems. 
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4 Manufacturing system modelling and performance analysis 

Consider a multi-station re-entrant manufacturing system composed of four stations and 
seven classes (see Figure 2), a prototype of a general model given in Section 2 (see 
Figure 1), customers arrive from outside requiring services, when these later finish 
processing step 1 by station 1, they align the second queue where they remain until they 
will be processed for step 2, after that they move to station 3 for the third service, and 
then to station 4 for the fourth one. Later, customers align the fifth queue requiring 
service of mean m5 from the third station, then continue requiring services from stations 2 
and 1, afterwards they leave definitively the whole system. Stations 1, 2 and 3 give 
priority to buffer 7, 6 and 5 over buffer 1, 2, respectively. 

Figure 2 Four station seven class manufacturing system 
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This system will be verified in order to ensure the theoretical result and finally analysis of 
the simulation model will be conducted. After the model is verified, there are different 
decisions that are made before the study proceeds any further. These include duration of 
the simulation, number of replication calculation, method of analysis used, etc. Finally, 
performance analysis and evaluation of the model and different operational procedures 
will be performed. 

So, we analyse, evaluate and improve different performance measures of our system 
‘The mean number of customers in the whole system and in each class, the mean number 
of customers waiting in the global system and in each station, and the load in the whole 
system and in each station’. Subsequently, we analyse the influence of parameters of the 
considered system for two specific policies: 

• First policy: The arriving customers follow a Poisson process with rate α, service 
priority is given to class i, class 2N – i is not interrupted since it begins to be served. 

• Second policy: This latter has been already defined in Section 2 (the mathematical 
model). 

Throughout the analysis, several conclusions will be drawn by comparing the results 
obtained of the two policies. The primary objective of this part of paper is to model a 
class of multi-station manufacturing line, to analyse, to evaluate and improve its 
performance using computer simulation techniques. Finally, conclusions are drawn 
from the analysis made and then recommendations are given based on those  
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concluded points. Therefore, it is believed that the work will add some value to the 
existing knowledge. Analysis and evaluation of a multi-station manufacturing system 
usually uses performance indicators capable of assessing the adequacy of the model 
used with respect to the real system. 

We first start by specifying performance measures which we consider interesting to 
study: In all what follows, we fixed Tmax = 20,000 time units (duration of the 
simulation) and MC = 100 (number of replication of Monte Carlo). 

The following notations are used throughout this paper. 

• Ni1, Ni2: The mean number of customers in the ith ( 1, 7)i =  class in the case of the 
first and the second policy respectively. 

• Qi1, Qi2: The mean number of customers in the queue of the ith ( 1, 7)i =  class in the 
case of the first and the second policy respectively. 

• Ci1, Ci2: The load (%) of the ith ( 1, 7)i = class in the case of the first and the second 
policy respectively. 

• Ni1, Ni2 ( 8, 10) :i =  The mean number of customers in the 1st, 2nd and 3d station in 
the case of the first and the second policy respectively. 

• Qi1, Qi2 ( 8, 10) :i =  The mean number of customers waiting in the first (resp. in the 
second) station in the case of the first and the second policy respectively. 

• Ci1, Ci2 ( 8, 10) :i =  The load (%) in the first (resp. in the second) station in the case 
of the first and the second policy respectively. 

• N11,1, N11,2: The mean number of customers in the global system in the case of the 
first and the second policy respectively. 

• Q11,1, Q11,2: The mean number of customers waiting in the global system in the case 
of the first and the second policy respectively. 

• C11,1, C11,2: The load (%) of the global system in the case of the first and the second 
policy respectively. 

First, let us fixed the service rates μi, ( 1, 7)i =  and vary the arrival rates γ. Thereafter, we 
carry out inversely so as to obtain different states of the network. 

4.1 First case: variation of the arrival rates α 

For μi = 1/7, 1, 7,i =  we vary α with a pitch equal to 0.01 starting with α = 0.05, for the 
two policies. The results are summarised in Tables 1 to 3. 
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Table 1 Variation of the mean number of customers in the system in terms of α 

α 0.0300 0.0500 0.0700 0.0900 

αe 0.0738 0.0741 0.0739 0.0740 
N11 0.4004 1.4426 15.3908 163.6631 
N12 0.5180 0.5179 0.5176 0.5199 
N21 0.3916 1.5115 16.0990 36.7867 
N22 40.4849 35.9752 40.4291 37.5077 
N31 0.3942 1.5689 13.3126 24.9258 
N32 24.1205 27.5055 27.2439 26.9458 
N41 0.2665 0.5773 1.0858 1.1549 
N42 1.1492 1.1698 1.1564 1.1575 
N51 0.3076 0.6742 1.1712 1.2338 
N52 1.2411 1.2466 1.2465 1.2436 
N61 0.3152 0.6894 1.2447 1.3158 
N62 1.3300 1.3331 1.3326 1.3191 
N71 0.3159 0.6969 1.2772 1.3819 
N72 1.3881 1.3932 1.3913 1.3894 
N81 0.7163 2.1395 16.6680 165.0450 
N82 1.9062 1.9111 1.9089 1.9092 
N91 0.7068 2.2008 17.3437 38.1024 
N92 41.8150 37.3083 41.7617 38.8268 
N10,1 0.7018 2.2431 14.4837 26.1597 
N10,2 25.3616 28.7521 28.4904 28.1895 
N11,1 2.3914 7.1607 49.5812 230.4620 
N11,2 70.2319 69.1414 73.3173 70.0830 

Table 2 Variation of the mean number of customers waiting in the system in terms of α 

α 0.0300 0.0500 0.0700 0.0800 

αe 0.0738 0.0741 0.0739 0.0738 
Q11 0.1214 0.8799 14.4692 67.9457 
Q12 0.0000 0.0000 0.0000 0.0000 
Q21 0.1155 0.9466 15.1861 33.0355 
Q22 39.5183 35.0080 39.4592 38.3486 
Q31 0.1186 0.9998 12.4126 23.2096 
Q32 23.1791 26.5561 26.2948 24.5111 
Q41 0.0575 0.2298 0.6159 0.6535 
Q42 0.6693 0.6877 0.6747 0.6681 
Q51 0.0589 0.2199 0.5243 0.5575 
Q52 0.5721 0.5744 0.5743 0.5740 
Q61 0.0672 0.2487 0.6165 0.6607 
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Table 2 Variation of the mean number of customers waiting in the system in terms of α 
(continued) 

Q62 0.6794 0.6822 0.6807 0.6856 
Q71 0.0692 0.2620 0.6585 0.7229 
Q72 0.7414 0.7472 0.7433 0.7398 
Q81 0.2945 1.4425 15.7175 69.3034 
Q82 0.9062 0.9111 0.9089 0.9072 
Q91 0.2863 1.5038 16.3977 34.3246 
Q92 40.8358 36.3287 40.7805 39.6738 
Q10,1 0.2837 1.5457 13.5490 24.4103 
Q10,2 24.3998 27.7854 27.5236 25.7364 
Q11,1 1.5382 6.1744 48.5814 131.0905 
Q11,2 69.2319 68.1414 72.3173 69.4109 

Table 3 Variation of the load of the system in terms of α 

α 0.0300 0.0500 0.0700 0.0800 

αe 0.0738 0.0741 0.0739 0.0738 
C11 27.9034 56.2669 92.1597 98.3781 
C12 51.8036 51.7936 51.7620 51.8370 
C21 27.6098 56.4846 91.2942 95.5056 
C22 96.6659 96.7170 96.9885 96.8079 
C31 27.5605 56.9101 90.0016 93.6947 
C32 94.1472 94.9383 94.9073 94.5793 
C41 20.8983 34.7421 46.9887 47.9379 
C42 47.9867 48.2142 48.1625 48.0859 
C51 24.8660 45.4305 64.6858 66.4758 
C52 66.8971 67.2259 67.2148 66.9888 
C61 24.8001 44.0694 62.8204 64.5011 
C62 65.0587 65.0936 65.1888 65.1764 
C71 24.6708 43.4941 61.8679 64.0160 
C72 64.6784 64.5983 64.8022 64.8947 
C81 42.1755 69.7075 95.0519 98.9062 
C82 100.0000 100.0000 100.0000 100.0000 
C91 42.0528 69.7033 94.5976 97.1743 
C92 97.9106 97.9575 98.1130 98.0244 
C10,1 41.8036 69.7345 93.4719 95.8436 
C10,2 96.1802 96.6732 96.6763 96.4378 
C11,1 85.3177 98.6319 99.9780 99.9940 
C11,2 100.0000 100.0000 100.0000 100.0000 
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According to Tables 1–3, we constant that: 

• In the case of the first policy: 

1 The mean number of customers (in the system and in the queues) is sensitive to 
the variation of α. 

2 By varying α, the mean number of customers and the load in the classes 1 and 2 
as in stations 1 and 2 increases considerably compared to other classes, so the 
first station will be congested which causes a congestion ‘bottleneck’ of the 
second station. 

• In the case of the second policy: 

1 There exists a considerable mean number of customers in the system and in the 
queue of each class. 

2 For any α, compared to the first policy, the mean number of customers is more 
important in the second station. The load in the classes and in the stations 2 and 
3 are equilibrated. 

3 For α = 0.03, the load in the second station and in class 2 is very high compared 
to other classes, this latter will causes a saturation of station 3, this bottleneck is 
due to the fact that m1 + m7 = m2 + m6 = m3 + m5, [equation (2) is not verified]. 

Graphical representations (see Figure 3) illustrate the details of some results in the case of 
the first policy. 

Figure 3 The state of the network when α = 0.08 and μ = [1/7, 1/7, 1/7, 1/7, 1/7, 1/7, 1/7]  
(see online version for colours) 
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Figure 3 The state of the network when α = 0.08 and μ = [1/7, 1/7, 1/7, 1/7, 1/7, 1/7, 1/7] 
(continued) (see online version for colours) 

  

  

  

 

To conclude, we present a summary table on the results (see Table 4). This allows us to 
say that: 

1 The network is unstable when one of the necessary conditions is not verified. 

2 By varying α from 0.03 to 0.07, the system is stable in the case of the two policies 
(ρi < 1, 1, 4).i =  On other hand, by varying α from 0.08 to 0.09, the system is 

unstable (ρi > 1, 1, 3).i =  
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Table 4 The state of the network in the case of the two policies 

α ρ1 ρ2 ρ3 ρ4 Constatation 

0.03 0.42 0.42 0.42 0.21 Stable 
0.04 0.56 0.56 0.56 0.28 
0.05 0.70 0.70 0.70 0.35 
0.06 0.84 0.84 0.84 0.42 
0.07 0.98 0.98 0.98 0.49 
0.08 1.12 1.12 1.12 0.56 Unstable 
0.09 1.26 1.26 1.26 0.63 

4.2 Second case: variation of the service rates 

4.2.1 Variation of the service rates of the first station 

Let us vary the service rates μ1 and μ7, and fixed the rate α as the service rates of the 
second, the third and the fourth station. For α = 0.05, μ2 = 0.1, μ3 = 0.15, μ4 = 0.1,  
μ5 = 0.15 and μ6 = 0.2. The results of the simulation in the case of the two policies are 
summarised in Tables 5 to 7. 
Table 5 Variation of the mean number of customers in the system in terms of μ1 and μ7 

μ1 0.2500 0.2000 0.1500 0.1000 
μ7 0.0500 0.1000 0.1500 0.2000 
αe 0.0426 0.0699 0.0845 0.0676 
N11 83.1417 2.1207 1.2689 2.2128 
N12 0.1699 0.3499 0.5611 0.6770 
N21 5.6732 2.8849 2.2431 2.1444 
N22 6.3445 60.0884 185.8040 30.6144 
N31 1.5271 1.3659 1.2280 1.2364 
N32 1.6018 5.0560 5.9585 4.8238 
N41 1.0883 1.1272 1.0609 1.0667 
N42 1.0861 2.3074 2.4475 2.2486 
N51 0.5737 0.6414 0.6228 0.6297 
N52 0.5886 1.0453 1.0846 1.0397 
N61 0.5921 0.6708 0.6600 0.6498 
N62 0.6087 1.1124 1.1585 1.0985 
N71 4.4914 1.1130 0.6775 0.6825 
N72 4.6337 2.1769 1.2861 1.1767 
N81 87.6331 3.2337 1.9464 2.8953 
N82 4.8036 2.5268 1.8472 1.8538 
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Table 5 Variation of the mean number of customers in the system in terms of μ1 and μ7 
(continued) 

N91 6.2654 3.5557 2.9031 2.7942 

N92 6.9532 61.2008 186.9625 31.7129 

N10,1 2.1008 2.0073 1.8508 1.8660 

N10,2 2.1903 6.1014 7.0431 5.8636 

N11,1 97.0875 9.9239 7.7613 8.6223 

N11,2 15.0332 72.1364 198.3003 41.6789 

Table 6 Variation of the mean number of customers waiting in the system in terms of  
μ1 and μ7 

μ1 0.2500 0.2000 0.1500 0.1000 

μ7 0.0500 0.1000 0.1500 0.2000 

αe 0.0426 0.0699 0.0845 0.0676 

Q11 82.1622 1.5175 0.7397 1.5407 

Q12 0.0000 0.0000 0.0000 0.0000 

Q21 5.1120 2.2175 1.5788 1.4795 

Q22 5.7668 59.1165 184.8068 29.6484 

Q31 1.0693 0.8333 0.7021 0.7067 

Q32 1.1339 4.2576 5.1360 4.0287 

Q41 0.6742 0.6270 0.5626 0.5652 

Q42 0.6685 1.6571 1.7868 1.5972 

Q51 0.2186 0.2194 0.2032 0.2056 

Q52 0.2251 0.4676 0.4932 0.4635 

Q61 0.2432 0.2521 0.2410 0.2303 

Q62 0.2506 0.5274 0.5612 0.5176 

Q71 3.6509 0.5764 0.2690 0.2735 

Q72 3.7829 1.4479 0.6945 0.6115 

Q81 86.6452 2.4889 1.2818 2.1414 

Q82 3.8036 1.5268 0.8472 0.8538 

Q91 5.6468 2.8097 2.1556 2.0453 

Q92 6.3207 60.2214 185.9647 30.7368 

Q10,1 1.5521 1.3458 1.1883 1.1983 

Q10,2 1.6324 5.2340 6.1570 4.9968 

Q11,1 96.0878 8.9296 6.7729 7.6326 

Q11,2 14.0332 71.1364 197.3003 40.6789 
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Table 7 Variation of the load of the system in terms of μ1 and μ7 

μ1 0.2500 0.2000 0.1500 0.1000 
μ7 0.0500 0.1000 0.1500 0.2000 
αe 0.0426 0.0699 0.0845 0.0676 
C11 97.9498 60.3274 52.9176 67.2133 
C12 16.9894 34.9891 56.1078 67.7047 
C21 56.1236 66.7418 66.4305 66.4924 
C22 57.7720 97.1954 99.7163 96.6012 
C31 45.7777 53.2558 52.5813 52.9699 
C32 46.7848 79.8424 82.2512 79.5141 
C41 41.4088 50.0126 49.8366 50.1474 
C42 41.7577 65.0351 66.0729 65.1352 
C51 35.5053 42.1999 41.9689 42.4062 
C52 36.3444 57.7753 59.1420 57.6242 
C61 34.8975 41.8650 41.9068 41.9525 
C62 35.8115 58.5049 59.7296 58.0978 
C71 84.0495 53.6568 40.8493 40.9059 
C72 85.0794 72.9019 59.1633 56.5210 
C81 98.7844 74.4812 66.4573 75.3980 
C82 100.0000 100.0000 100.0000 100.0000 
C91 61.8624 74.5914 74.7526 74.8883 
C92 63.2502 97.9446 99.7810 97.6081 
C10,1 54.8687 66.1481 66.2551 66.7718 
C10,2 55.7938 86.7312 88.6102 86.6811 
C11,1 99.9684 99.4264 98.8406 98.9624 
C11,2 100.0000 100.0000 100.0000 100.0000 

Following the numerical results given in Tables 5–7, we constat that: 

• In the case of the first policy: 
1 For μ = [0.25, 0.1, 0.15, 0.1, 0.15, 0.2, 0.05], the mean number of customers as 

well as the load in the first class and in station 1, also in the overall system is 
very high compared to other classes, therefore the network is unstable. The 
instability is caused by the saturation of the first station (ρ1 > 1). 

2 For (μ1, μ7) varying from (0.2, 0.1) to (0.15, 0.15), the mean number of 
customers decreases in the class i, 2, 7i =  as in stations 1, 2, 3 and in the global 
system. 

• In the case of the second policy: 
1 For μ = [0.15, 0.1, 0.15, 0.1, 0.15, 0.2, 0.15], the mean number of customers and 

the load in the second class and in the second station is very high, this later is 
due to the fact that equation (2) is not verified, m1 + m7 < m2 + m6. 
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2 For (μ1, μ7) varying from (0.25, 0.05) to (0.1, 0.2), the load of the first station 
and the global system is stable. 

3 For (μ1, μ7) varying from (0.2, 0.1) to (0.15, 0.15), the mean number of 
customers increases. 

For some results of Tables 5 to 7, graphical representations ‘in the case of the first policy’ 
are illustrated in Figures 4 and 5. 

Figure 4 The state of the network when μ = [0.2, 0.1, 0.15, 0.1, 0.15, 0.2, 0.1] and α = 0.05  
(see online version for colours) 
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Figure 4 The state of the network when μ = [0.2, 0.1, 0.15, 0.1, 0.15, 0.2, 0.1] and α = 0.05 
(continued) (see online version for colours) 

  

 

Figure 5 The state of the network when μ = [0.25, 0.1, 0.15, 0.1, 0.15, 0.2, 0.05] and α = 0.05 
(see online version for colours) 
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Figure 5 The state of the network when μ = [0.25, 0.1, 0.15, 0.1, 0.15, 0.2, 0.05] and α = 0.05 
(continued) (see online version for colours) 

  

  

  

 

In conclusion, we present a summary table containing different situations of the network, 
based on its parameters. Table 8 permits us to constat that the state of the network is 
sensible to the variation of its parameters. Indeed, it moves from stability state (all 
conditions are fulfilled) to instability (if one of the conditions is not satisfied). For 
instance, when (μ2, μ6) = (0.25, 0.05), the network is unstable because (ρ1 = 1.2 > 1). 
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Table 8 The state of the network by varying μ1 and μ7 

μ1 μ7 ρ1 Constatation 
0.25 0.05 1.2 Unstable 
0.2 0.1 0.75 Stable 
0.15 0.15 0.66 
0.1 0.2 0.75 

4.2.2 Variation of the service rates of the second station 

Let us vary μ2 and μ6, fixed the arrival rate α, and the service rates of the first, the third 
and the fourth station. For α = 0.05, μ1 = 0.15, μ3 = 0.1, μ4 = 0.1, μ5 = 0.15 and μ7 = 0.15. 
In the case of the two policies, the simulation results are summarised in Tables 9 to 11. 
Table 9 Variation of the mean number of customers in the system in terms of μ2 and μ6 

μ2 0.3000 0.2500 0.2000 0.1500 0.1000 
μ6 0.0500 0.1000 0.1500 0.200 0.2500 
αe 0.1074 0.0899 0.0902 0.0899 0.0905 
N11 1.0587 1.2810 1.2275 1.2585 1.2831 
N12 0.7152 0.6030 0.6006 0.6014 0.6020 
N21 72.6008 1.6892 0.8582 0.9348 1.8614 
N22 638.6951 22.7448 5.3407 8.3180 155.6400 
N31 8.5491 4.5562 3.6572 3.4218 3.3426 
N32 9.5928 283.3280 296.0426 291.3640 157.2491 
N41 1.0470 1.1020 1.0601 1.0548 1.0312 
N42 1.0871 1.7127 1.7155 1.7641 1.7052 
N51 0.7706 0.8510 0.8231 0.8185 0.8140 
N52 0.7986 0.8510 1.1866 1.1928 1.1827 
N61 4.3566 1.0242 0.5903 0.4831 0.5680 
N62 4.6594 1.5667 0.8934 0.7788 0.9188 
N71 0.5167 0.6526 0.6472 0.6590 0.6838 
N72 0.6843 1.0459 1.0637 1.0878 1.1197 
N81 1.5754 1.9336 1.8747 1.9175 1.9670 
N82 1.3995 1.6489 1.6644 1.6891 1.7217 
N91 76.9573 2.7134 1.4485 1.4179 2.4294 
N92 643.3545 24.3115 6.2341 9.0968 156.5587 
N10,1 9.3197 5.4072 4.4803 4.2402 4.1566 
N10,2 10.3914 284.5099 297.2292 292.5568 158.4318 
N11,1 88.8994 11.1563 8.8637 8.6305 9.5841 
N11,2 656.2326 312.1830 306.8431 305.1068 318.4175 
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Table 10 Variation of the mean number of customers in the queues in terms of μ2 and μ6 

μ2 0.3000 0.2500 0.2000 0.1500 0.1000 
μ6 0.0500 0.1000 0.1500 0.2000 0.2500 
αe 0.1074 0.0899 0.0902 0.0899 0.0905 
Q11 0.5670 0.7498 0.7021 0.7300 0.7525 
Q12 0.0000 0.0000 0.0000 0.0000 0.0000 
Q21 71.6255 1.1508 0.4358 0.4774 1.2416 
Q22 637.6981 21.8258 4.5527 7.4597 154.6435 
Q31 7.8819 3.7893 2.8961 2.6644 2.5850 
Q32 8.9089 282.3325 295.0450 290.3666 156.2545 
Q41 0.6264 0.6053 0.5629 0.5570 0.5346 
Q42 0.6553 1.1167 1.1154 1.1616 1.1086 
Q51 0.3185 0.3284 0.3042 0.3016 0.2967 
Q52 0.3355 0.5323 0.5362 0.5417 0.5336 
Q61 3.4967 0.4937 0.2090 0.1520 0.2042 
Q62 3.7881 0.9075 0.3918 0.3159 0.4064 
Q71 0.1635 0.2371 0.2359 0.2498 0.2791 
Q72 0.2391 0.4778 0.4980 0.5275 0.5728 
Q81 0.9588 1.2647 1.2111 1.2527 1.3029 
Q82 0.3995 0.6489 0.6644 0.6891 0.7217 
Q91 75.9715 2.0124 0.8648 0.8328 1.7306 
Q92 642.3568 23.3649 5.3834 8.2021 155.5616 
Q10,1 8.6145 4.5764 3.6480 3.4098 3.3252 
Q10,2 9.6727 283.5134 296.2311 291.5587 157.4356 
Q11,1 87.8995 10.1607 7.8726 7.6400 8.5913 
Q11,2 655.2326 311.1830 305.8431 304.1068 317.4175 

Table 11 Variation of the load of the system in terms of μ2 and μ6 

μ2 0.3000 0.2500 0.2000 0.1500 0.1000 
μ6 0.0500 0.1000 0.1500 0.2000 0.2500 
αe 0.1074 0.0899 0.0902 0.0899 0.0905 
C11 49.1684 53.1218 52.5445 52.8489 53.0629 
C12 71.5172 60.2999 60.0637 60.1370 60.1982 
C21 97.5310 53.8347 42.2434 45.7444 61.9838 
C22 99.6968 91.8981 78.8088 85.8292 99.6431 
C31 66.7137 76.6885 76.1054 75.7430 75.7628 
C32 68.3900 99.5501 99.7589 99.7421 99.4593 
C41 42.0638 49.6731 49.7235 49.7820 49.6546 
C42 43.1798 59.5967 60.0038 60.2487 59.6664 
C51 45.2146 52.2598 51.8902 51.6811 51.7297 
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Table 11 Variation of the load of the system in terms of μ2 and μ6 (continued) 

C52 46.3121 64.9582 65.0430 65.1050 64.9109 
C61 85.9871 53.0533 38.1318 33.1047 36.3828 
C62 87.1341 65.9186 50.1596 46.2909 51.2326 
C71 35.3228 41.5530 41.1259 40.9190 40.4722 
C72 44.5253 56.8093 56.5768 56.0267 54.6899 
C81 61.6549 66.8929 66.3618 66.4738 66.4124 
C82 100.0000 100.0000 100.0000 100.0000 100.0000 
C91 98.5839 70.0996 58.3665 58.5150 69.8806 
C92 99.7674 94.6594 85.0746 89.4648 99.7095 
C10,1 70.5120 83.0829 83.2273 83.0392 83.1352 
C10,2 71.8760 99.6542 99.8107 99.8047 99.6139 
C11,1 99.9908 99.5598 99.1070 99.0451 99.2803 
C11,2 100.0000 100.0000 100.0000 100.0000 100.0000 

Following the numerical results given in Tables 9 to 11, we constat that: 

• In the case of the second policy: 
1 For (μ2, μ6) = (0.3, 0.05), the mean number of customers as well as the load in 

the second class and in the second station in the case of the first policy is 
considerable and it is very high in the case of the second policy which causes a 
bottleneck in the overall system; equation (2) is not verified (m1 + m7 < m2 + 
m6). 

2 For (μ2, μ6) varying from (0.25, 0.1) to (0.2, 0.15), the load is very high in the 
third class and the mean number of customers in the third station increases. 

3 For (μ2, μ6) varying from (0.15, 0.2) to (0.1, 0.25), the mean number of 
customers deceases. 

4 Whatever the variation of (μ2, μ6), the first station 1 and the global system are 
clogged which will also cause a congestion in the station 2. 

• In the case of the first policy: For (μ2, μ4) varying from (0.25, 0.1) to (0.1, 0.25), the 
mean number of customers is almost equally distributed. 

For some results of Tables 9 to 11, the graphs concerning the first policy are illustrated in 
Figures 6 and 7. 
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Figure 6 The state of the network when μ = [0.15, 0.25, 0.1, 0.1, 0.15, 0.1, 0.15] and α = 0.05 
(see online version for colours) 
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Figure 6 The state of the network when μ = [0.15, 0.25, 0.1, 0.1, 0.15, 0.1, 0.15] and α = 0.05 
(continued) (see online version for colours) 

  

 

Figure 7 The state of the network when μ = [0.15, 0.3, 0.1, 0.1, 0.15, 0.05, 0.15] and α = 0.05 
(see online version for colours) 
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Figure 7 The state of the network when μ = [0.15, 0.3, 0.1, 0.1, 0.15, 0.05, 0.15] and α = 0.05 
(continued) (see online version for colours) 

  

  

  

 

As conclusion, we present a summary table (see Table 12) containing different network 
situations, depending on its parameters. From Table 12, we constat that the state of the 
system is sensible to the variation of its parameters. In fact, we have a stable state when 
all the conditions are satisfied, and unstable state when one of the conditions is not 
satisfied. For example, when (μ2, μ6) = (0.3, 0.05), the system is unstable because  
(ρ2 = 1.16 > 1). 

 
 



   

 

   

   
 

   

   

 

   

    Multi-station manufacturing system analysis 257    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Table 12 The state of the system by varying μ2 and μ6 in the case of the two policies 

μ2 μ6 ρ2 Constatation 
0.30 0.05 1.60 Unstable 
0.25 0.10 0.70 Stable 
0.20 0.15 0.58 
0.15 0.20 0.58 
0.10 0.25 0.70 

4.3 Concluding remarks for this section 

• A detailed simulation of a type of multi-station manufacturing systems (four stations 
and seven classes) is presented, considering two disciplines. 

• Using Monte Carlo techniques, the properties for system trajectories are  
well-established. The effectiveness of the proposed Monte Carlo algorithm is 
examined by a series of simulation experiments and is found to be gratifying. 

• It is shown how perfect samples can be used to analyse and solve complex  
multi-server queue models, as well as to highlight selected properties and 
characteristics of them. The theoretical result given in Section 3 is illustrated and the 
effect of various parameters on the performance of the system have been examined. 

• Simulation analysis from the stationary distributions should output information about 
the facial characteristics of any system, examples are information about bottlenecks. 

5 Conclusions and final remarks 

In the current paper, we present an analysis of a priority multi-station manufacturing 
system modelled by re-entrant controlled queueing system, these sort of systems are 
fundamental of study in operations research and applied probability as they provide 
sensible models for a variety of engineering, communications, telecommunication, and 
service situations. We establish the stability condition (condition 2) of Theorem 1 for our 
model by using Foster criterion and fluid approach. This is a generalisation of the result 
given by Weiss (2004). 

In this present work, it is also demonstrated that a Monte Carlo simulation can be 
used to deal with this type of systems. From the preliminary analysis, it was shown that 
the simulation model is capable of analysing a complex multi-station manufacturing 
system. The model developed in this study was aimed to understand and improve the 
performances of the priority production system. From the results, it can be concluded that 
the performances obtained for a given system from our technique and theoretical results 
are very close to each other. Still the coherence in results obtained is very significant, 
hence it can be said that these techniques are applicable to any manufacturing system to 
evaluate and confirms its performances. 

For further work, it is interesting to study our system with general processing times 
and investigate their potential in terms of performance. For a general re-entrant line with 
infinite supply of work, a general approach may be needed for hunting stable conditions. 
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